The effects of procainamide on conduction in anisotropic canine ventricular myocardium.

نویسندگان

  • A H Kadish
  • J F Spear
  • J H Levine
  • E N Moore
چکیده

Although conduction velocity in cardiac tissue is dependent on fiber orientation, the influence of commonly used antiarrhythmic agents on conduction longitudinal and transverse to such fibers is unknown. We evaluated the effects of procainamide on conduction velocity and intracellular potentials in vitro during conduction longitudinal and transverse to fiber orientation in epicardial strips obtained from areas of uniform fiber orientation from 15 adult mongrel dogs. Ventricular epicardial strips demonstrated marked anisotropy. At a pacing cycle length of 1000 msec, mean conduction velocity longitudinal to fiber orientation averaged 0.602 +/- 0.051 m/sec and mean conduction velocity transverse to fiber orientation was 0.186 +/- 0.024 m/sec, resulting in a ratio of longitudinal to transverse conduction velocities of (theta L/T) 3.27 +/- 0.38. After the addition of procainamide, conduction velocity decreased to 0.532 +/- 0.062 m/sec longitudinal to fiber orientation and to 0.174 +/- 0.023 m/sec transverse to fiber orientation resulting in a decrease of theta L/T to 3.09 +/- 0.37 (p less than .05 vs control). Before the addition of procainamide, when pacing at progressively shorter cycle lengths, conduction velocity longitudinal to fiber orientation was relatively unchanged, whereas conduction velocity transverse to fiber orientation decreased resulting in an increase in theta L/T. After the addition of procainamide, conduction velocity at shorter pacing cycle lengths decreased both longitudinal and transverse to fiber orientation demonstrating the well-known use-dependent effect of procainamide. However, in contrast to control conditions, conduction velocity longitudinal to fiber orientation was slowed by a greater extent than the conduction transverse to fiber orientation, resulting in an even greater decrease in theta L/T. To investigate the effect of differences in drug binding during propagation in different directions, we examined conduction velocity during alternations in pacing direction and compared it with velocity during steady-state pacing. At a pacing cycle length of 1000 msec, no difference was observed between the initial conduction velocity after changing pacing directions and the steady-state conduction velocity. At pacing cycle lengths shorter than 1000 msec, when changing from transverse to longitudinal conduction, there was an initial drop in normalized conduction velocity that was present on the first beat of longitudinal conduction; however, with continued pacing in a longitudinal direction there was a further decrease in conduction velocity.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue-Specific Determinants of Anisotropic Conduction Velocit in Canine Atrial and Ventricular Myocardium

Electrical conduction is very rapid and highly anisotropic in atrial fiber bundles, such as the crista terminalis. In contrast to left ventricular myocardium in which the ratio of longitudinal to transverse conduction velocities is =3, propagation velocity in the crista terminalis is "10 times greater in the longitudinal than in the transverse direction. To elucidate potential determinants of t...

متن کامل

Recurrent Sustained Ventricular Tachycardia

18. El-Sherif N, Scherlag BJ, Lazzara R, Hope RR: Re-entrant arrhythmias in the later myocardial period. I. Conduction characteristics in the infarct zone. Circulation 55: 686, 1977 19. El-Sherif N, Hope RR, Scherlag BJ, Lazzara R: Re-entrant arrhythmias in the late myocardial infarction period. II. Patterns of initiation and termination. Circulation 55: 702, 1977 20. Spear JF, Horowitz LN, Moo...

متن کامل

Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium.

Electrical conduction is very rapid and highly anisotropic in atrial fiber bundles, such as the crista terminalis. In contrast to left ventricular myocardium in which the ratio of longitudinal to transverse conduction velocities is approximately 3, propagation velocity in the crista terminalis is approximately 10 times greater in the longitudinal than in the transverse direction. To elucidate p...

متن کامل

Enhancement of procainamide - induced rate - dependent conduction slowing by elevated myocardial extracellular potassium concentration in vivo WAYNE

Procainamide, a type 1A antiarrhythmic drug, blocks sodium channels and reduces the maximum rate of rise of the cardiac action potential (Vmax) in a rate-dependent fashion. In vitro, the magnitude of this rate-dependent reduction in Vmax is greater in tissue that is partially depolarized at rest than in tissue with a normal resting potential. Reductions in Vmax produced by drugs that block sodi...

متن کامل

ELECTROPHYSIOLOGY Enhancement of procainamide - induced rate - dependent conduction slowing by elevated myocardial extracellular potassium concentration in vivo

Procainamide, a type 1A antiarrhythmic drug, blocks sodium channels and reduces the maximum rate of rise of the cardiac action potential (Vmax) in a rate-dependent fashion. In vitro, the magnitude of this rate-dependent reduction in Vmax is greater in tissue that is partially depolarized at rest than in tissue with a normal resting potential. Reductions in Vmax produced by drugs that block sodi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 74 3  شماره 

صفحات  -

تاریخ انتشار 1986